基于残差注意和非对称损失的行人属性识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-7449.2023.02.002

基于残差注意和非对称损失的行人属性识别

引用
针对目前行人属性识别存在着复杂样本识别精度较低和属性数据集中属性分布不平衡的问题,本文提出一种基于残差注意的行人属性识别网络.该网络采用Resnet50作为骨干网络提取出具有语义信息的行人属性特征,并采用属性类别残差注意网络结构关注属性存在的关键区域且挖掘不同属性类别之间的内部联系.同时采用归一化和非对称的加权损失策略降低行人属性样本分布不平衡的影响,加快模型收敛速度并提高属性识别精度.在行人属性公共数据集PETA和PA100K上进行实验,实验结果表明,该方法在公共数据集PETA上获得的平均识别精度为87.32%,在公共数据集PA100K上可以获得79.75%的识别精度,与其他行人属性识别方法相比具有明显优势.

属性类别、残差注意、非对称损失、行人属性识别

37

TP391(计算技术、计算机技术)

山西省研究生创新资助项目;山西省高等学校教学改革创新资助项目

2023-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

99-105

相关文献
评论
暂无封面信息
查看本期封面目录

测试技术学报

1671-7449

14-1301/TP

37

2023,37(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn