基于经验模态分解与小波分析的超声信号降噪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-7449.2018.05.010

基于经验模态分解与小波分析的超声信号降噪方法

引用
经验模态分解(EMD)是目前信号去噪中应用较多的一种方法,但处理与噪声时频特征相近的信号时,该算法存在内蕴模态函数(IMF)混叠现象.本文从信号降噪的角度出发,提出基于经验模态分解与小波分析的超声信号降噪方法,首先利用EMD将信号分解为多个IMF分量,通过计算各分量与信号间的互相关系数判断存在模态混叠现象的过渡IMF,从多个IMF分量辨识出噪声与信号的分界,对过渡IMF进行小波去噪,去除过渡分量中的噪声;然后将去噪后的过渡分量IMF与其后续分量进行信号重构,得到去噪后的信号.为了验证所提方法的有效性,本文分别以含噪bumps信号和实际超声信号为例,将该方法与其它4种去噪方法进行了对比.实验结果表明:EMD结合小波法优于单独小波法,而本文方法进一步提高了EMD方法的去噪能力,为EMD去噪方法的改进提供了新思路.

去噪、经验模态分解、互相关系数、小波、超声信号

32

TN911

国家自然科学基金资助项目11474090,11774088,61502164;湖南省自然科学基金资助项目2016JJ3090;湖南省研究生创新基金资助项目CX2017B221;湖南省教育厅科学研究优秀青年资助项目17B025

2018-10-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

422-428

相关文献
评论
暂无封面信息
查看本期封面目录

测试技术学报

1671-7449

14-1301/TP

32

2018,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn