结合差分曲率的空间模糊C均值图像分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-7449.2017.05.004

结合差分曲率的空间模糊C均值图像分割算法

引用
针对基于空间信息的模糊C均值图像分割算法(sFCM)在对含噪图像分割时,图像的噪声和边缘细节不能同时得到较为正确分割的问题,本文提出了一种结合差分曲率的改进sFCM算法.差分曲率(difference curvature)可以有效地区分图像边缘和平坦区.将差分曲率引入到sFCM算法的空间函数中,算法的函数相关性参数在每个像素点处自适应取值,使改进算法在抗噪性能提高的同时,对图像细节有着更好的分割效果.实验结果表明:在对含噪图像进行分割时,本文提出的改进算法相比于sFCM及其衍生算法具有更好的模糊划分效果,并有效地提升了sFCM算法的抗噪性和对边缘细节的保护能力.

模糊聚类、图像分割、图像去噪、空间信息、差分曲率

31

TP391.41(计算技术、计算机技术)

国家自然科学基金资助项目61671413;山西省自然科学基金资助项目2015011046

2017-12-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

392-397

相关文献
评论
暂无封面信息
查看本期封面目录

测试技术学报

1671-7449

14-1301/TP

31

2017,31(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn