基于光流和深度运动图的行为识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15886/j.cnki.hdxbzkb.2020.0017

基于光流和深度运动图的行为识别算法

引用
为了融合不易受光照等环境因素影响的深度信息和RGB视频序列中丰富的纹理信息,提出一种基于光流和深度运动图(Depth Motion Map,DMM)的人体行为识别算法.首先从RGB视频序列获取彩色信息(RGB视频帧)和光流信息,并且从同步的深度视频序列获取深度信息,以增强特征互补性,其次把3种特征信息分别作为基于ResNet101的空间流网络、时间流网络和深度流网络的输入,通过LSTMs进行特征融合,最后将特征送入Softmax层得到每个行为类别的概率值.实验结果表明,在具有挑战性的UTD-MHAD数据集和MSR Daily Activity 3D数据集上的行为识别准确率分别为94.86%和97.69%,在与该领域中的同类算法比较中表现优异.

人体行为识别、光流、RGB、深度运动图像、ResNet101、LSTMs

38

TP391.41(计算技术、计算机技术)

海南省重点研发计划项目;海南省自然科学基金

2020-08-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

116-123

相关文献
评论
暂无封面信息
查看本期封面目录

海南大学学报(自然科学版)

1004-1729

46-1013/N

38

2020,38(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn