基于深度学习的视网膜OCT图像无监督去噪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS230720

基于深度学习的视网膜OCT图像无监督去噪方法

引用
以散斑噪声为主的噪声干扰严重影响视网膜光学相干层析(OCT)图像质量.深度学习是一种有效的去噪方法.但对活体成像而言,其很难获取多帧配准的真值图像,这影响了监督学习方法的效果.提出一种无监督深度残差稀疏注意力网络用于视网膜OCT图像去噪,并分别从视觉评价和数值评价两方面与传统的三维块匹配滤波去噪算法和经典的深度学习去噪网络进行对比.研究了监督学习与无监督学习策略下3种卷积神经网络的去噪性能,并利用公开的视网膜OCT图像数据集进行泛化能力测试.实验结果表明:所提算法的视觉评价和数值评价均具有良好的降噪效果,可以实现视网膜OCT图像高质量降噪,具有较强的泛化性,而且与监督学习相比,无监督学习在数据集不充分时仍能获得较好的降噪性能,可以有效地辅助医生进行准确高效的临床诊断.

光学相干层析技术、视网膜、图像去噪、深度学习、无监督学习

43

O436(光学)

国家自然科学基金;京津冀基础研究合作专项;天津市科技支撑重点项目

2023-11-16(万方平台首次上网日期,不代表论文的发表时间)

共11页

115-125

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

43

2023,43(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn