基于深度学习的简化多信道并行光性能监测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS222033

基于深度学习的简化多信道并行光性能监测

引用
提出了一种基于信号光谱和多任务深度神经网络(MT-DNN)的多信道并行光性能监测(OPM)方案,采集多信道光谱图进行预处理来设计幅度直方图(Ahs),可实现波分复用(WDM)系统多信道调制格式识别(MFI)和光信噪比(OSNR)监测.在建立的3信道WDM相干光通信系统中,对由PDM-4QAM/16QAM/64QAM组合的10种调制格式的3信道信号实现了 MFI准确率为100%、OSNR监测的平均绝对误差(MAE)为0.16 dB的精准监测.为进一步研究所提OPM方案的性能以应对复杂的传输环境,提出了迁移学习辅助的多任务深度神经网络(TL-MT-DNN)用于多信道MFI和OSNR并行监测.结果表明,所提方案可移植性较好,还可节省大量样本和训练周期,其MFI准确率仍可达100%,3信道OSNR监测的MAE分别为0.24 dB、0.20 dB和0.19 dB.

机器视觉、光性能监测、波分复用、光信噪比、调制格式识别、迁移学习、多任务深度神经网络

43

TN929.11

国家自然科学基金;国家重点研发计划;湖北省重点研发计划;武汉市知识创新专项曙光计划项目

2023-06-30(万方平台首次上网日期,不代表论文的发表时间)

共11页

131-141

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

43

2023,43(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn