基于空谱字典的加权联合稀疏表示高光谱图像分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS220854

基于空谱字典的加权联合稀疏表示高光谱图像分类

引用
稀疏表示广泛用于高光谱图像分类任务中.针对字典原子空间信息和光谱信息未得到充分利用的问题,提出了基于空谱字典的加权联合稀疏表示高光谱图像分类算法.计算测试像元与字典原子的空谱联合距离,选择相似度最高的K个字典原子,并将被选择字典原子的超像素邻域扩充到新的字典中,形成空谱字典.在联合稀疏模型中,对测试像元的超像素邻域像元使用不同的权重,在空谱字典上构建加权稀疏表示模型.基于所选的两个高光谱数据集的实验证明所提算法能够有效地提高分类精度.

图像处理、高光谱图像分类、空谱字典、超像素、稀疏表示

43

TP751.1(遥感技术)

2023-04-03(万方平台首次上网日期,不代表论文的发表时间)

共11页

58-68

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn