基于自适应多层卷积特征决策融合的目标跟踪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS202040.2315002

基于自适应多层卷积特征决策融合的目标跟踪

引用
针对在复杂环境中目标尺度变化、形状变化以及场景光照变化、背景干扰等因素导致的目标跟踪稳定性下降问题,提出一种基于自适应多层卷积特征决策融合的目标跟踪算法.首先,通过卷积神经网络VGG-Net-19提取目标候选区域的多层卷积特征;其次,在相关滤波模型框架下,利用这些卷积特征构建多个弱跟踪器;接着,根据每个弱跟踪器的决策损失变化自适应地调节它们的决策权重,完成基于多层卷积特征的目标位置估计;然后,根据尺度相关滤波模型在目标中心区域进行多尺度采样,并利用相邻帧的尺度变化先验分布完成对目标尺度的预测.选取51组具有多种挑战因素的视频序列对所提算法的跟踪性能进行测试.实验结果表明,与当前主流的目标跟踪算法相比,所提算法取得了更高的跟踪精度和成功率,同时可以较好地适应目标的尺度变化,并且在目标发生形变、场景出现光照变化及背景干扰等复杂条件下仍具有较好的跟踪鲁棒性.

机器视觉、目标跟踪、决策融合、卷积神经网络、卷积特征、尺度自适应

40

TP391.4(计算技术、计算机技术)

国家重点研发计划;国家自然科学基金

2021-03-05(万方平台首次上网日期,不代表论文的发表时间)

共13页

169-181

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

40

2020,40(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn