基于机器学习对火焰温度场和CO2浓度场的同步重建
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS202040.2312003

基于机器学习对火焰温度场和CO2浓度场的同步重建

引用
基于可调谐二极管激光吸收光谱法(TDLAS)和传统的反演重建算法对轴对称火焰的二维温度场和CO2浓度场的同步重建通常需要进行空间轴向和径向的多视线扫描式测量,测量系统相对复杂,反演重建效率不佳.本文基于4.2μm中红外TDLAS激光测量系统,针对轴对称层流扩散火焰,建立了能够同步反演火焰温度场和CO2浓度场的机器学习模型.与传统的反演重建方法相比,采用机器学习的反演模型只需要对火焰中心轴向进行扫描式测量就能同步、高效地重建轴对称层流扩散火焰的二维温度场和CO2浓度场,在相同的硬件条件下需要更少的实验测量数据,能够简化实验测量的复杂度并提高反演重建的效果.

光谱学、层流火焰、机器学习、温度、浓度

40

TP181(自动化基础理论)

国家自然科学基金;国家科研启动基金

2021-03-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

102-110

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

40

2020,40(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn