基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算
冠层叶绿素能够有效反映植被的生长状况.为了基于高光谱精确估算冠层的叶绿素含量,以棉花为研究对象,实测棉花冠层光谱反射率和叶绿素含量,然后进行原始光谱数据转换,计算高光谱参数,分析叶绿素含量与高光谱参数之间的相关关系,构建估算棉花冠层叶绿素含量的BP神经网络模型.结果 表明:包络线去除处理后,冠层反射率和叶绿素含量的相关性在560~740 nm波段范围内提高了10.7%,效果优于原始光谱和一阶微分光谱得到的结果;基于原始光谱和去除包络线光谱建立的植被指数mSR、mND、NDI、DD与叶绿素含量表现出较高的相关性,相关系数均在0.8左右;在所建的BP神经网络模型中,基于包络线光谱指数建立的模型的决定系数为0.85,均方根误差和相对误差分别为1.37、1.97%,这一结果优于基于红边参数、原始光谱植被指数和一阶微分光谱指数建立的模型.本研究可为作物叶绿素含量估算的实际应用提供理论依据和技术支持.
光谱学、棉花、叶绿素含量、高光谱、BP神经网络
39
O436(光学)
国家自然科学基金;国家自然科学基金
2019-11-19(万方平台首次上网日期,不代表论文的发表时间)
共9页
364-372