基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS201939.0930003

基于高光谱和BP神经网络的棉花冠层叶绿素含量联合估算

引用
冠层叶绿素能够有效反映植被的生长状况.为了基于高光谱精确估算冠层的叶绿素含量,以棉花为研究对象,实测棉花冠层光谱反射率和叶绿素含量,然后进行原始光谱数据转换,计算高光谱参数,分析叶绿素含量与高光谱参数之间的相关关系,构建估算棉花冠层叶绿素含量的BP神经网络模型.结果 表明:包络线去除处理后,冠层反射率和叶绿素含量的相关性在560~740 nm波段范围内提高了10.7%,效果优于原始光谱和一阶微分光谱得到的结果;基于原始光谱和去除包络线光谱建立的植被指数mSR、mND、NDI、DD与叶绿素含量表现出较高的相关性,相关系数均在0.8左右;在所建的BP神经网络模型中,基于包络线光谱指数建立的模型的决定系数为0.85,均方根误差和相对误差分别为1.37、1.97%,这一结果优于基于红边参数、原始光谱植被指数和一阶微分光谱指数建立的模型.本研究可为作物叶绿素含量估算的实际应用提供理论依据和技术支持.

光谱学、棉花、叶绿素含量、高光谱、BP神经网络

39

O436(光学)

国家自然科学基金;国家自然科学基金

2019-11-19(万方平台首次上网日期,不代表论文的发表时间)

共9页

364-372

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

39

2019,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn