基于Shearlet多尺度边界检测及融合的浮选气泡提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS201838.0315004

基于Shearlet多尺度边界检测及融合的浮选气泡提取

引用
针对浮选表面气泡图像边界弱、光照不均匀和气泡分布不均匀导致气泡提取困难的问题,提出了一种结合非下采样Shearlet变换(NSST)和多尺度边界检测及融合的浮选气泡提取方法.对气泡图像进行NSST分解,得到低频子带和多尺度多方向高频子带图像,通过构造自适应分数阶微分谷底检测模板提取低频子带的山谷边界,结合尺度相关系数及方向模极大值检测获取高频子带的边缘信息,再通过山脊特性判定从边缘信息中提取气泡的边界细节,最后进行多尺度边界融合、边界形态学处理以实现气泡提取.实验结果表明:该方法受噪声和光照的影响小,能有效提取出不同分布类型的气泡,其平均检测效率和准确率较现有方法有较大的提高,能够满足浮选工况动态变化的需求.

机器视觉、浮选气泡提取、多尺度边界检测、非下采样Shearlet变换、分数阶微分谷底检测、方向模极大值

38

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金

2018-05-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

344-352

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

38

2018,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn