基于非负矩阵分解和广义判别分析的掌纹识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3788/AOS20092903.0643

基于非负矩阵分解和广义判别分析的掌纹识别

引用
非负矩阵分解(NMF)具有非负性和局部性的特点,是一种新型的特征提取方法.由于NMF是非监督学习算法,运用NMF提取掌纹特征时没有考虑训练样本的类别信息,因而分类效果不够理想.为了在提取掌纹特征的同时融人类别信息,提出运用非负矩阵分解和广义判别分析(GDA)相结合的方法进行掌纹识别.为了降低计算的复杂性,在特征提取之前,应用小波变换对掌纹图像进行三级分解,提取低频子图像.在低频子图像上应用NMF+GDA提取掌纹特征,计算特征向量间的余弦距离进行掌纹匹配.运用PolyU掌纹图像库进行测试.结果表明,与主元分析(PCA)、独立元分析(ICA)和NMF相比,算法的等误率(EER)最低为0.16%,特征提取和匹配总时间为0.812 s,满足实时系统的要求.

生物特征识别、特征提取、非负矩阵分解、广义判别分析

29

TP391.41(计算技术、计算机技术)

国家自然科学基金60672078资助课题

2009-06-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

643-647

相关文献
评论
暂无封面信息
查看本期封面目录

光学学报

0253-2239

31-1252/O4

29

2009,29(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn