10.16088/j.issn.1001-6600.2023050801
基于改进YOLOv5的铝型材表面缺陷检测方法
针对铝型材表面缺陷不同类别尺寸差别较大,导致检测效果较差的情况,本文提出一种基于改进YOLOv5的铝型材表面缺陷检测算法.首先,在网络中嵌入CA(coordinate attention)注意力机制模块,使网络更好地抑制图像中无效样本的干扰,更多聚焦于有用信息;其次,在原有检测层上增加一个小目标检测层,获取和传递更为丰富且更具判别性的小目标特征,以解决对小目标缺陷检测精度低的问题,提高整体检测精度;最后,引入SIoU损失函数,用边界框回归之间的向量角度来重新定义损失函数,在有效减少总自由度损失的同时提高推理精度.将改进算法应用到天池铝型材数据集中进行验证,实验结果表明:该模型能有效识别铝型材表面不同种类的缺陷,较原YOLOv5算法mAP提高11.4个百分点,检测速度达到66.4 frame/s,能够满足目前铝型材工厂生产现场缺陷检测要求.
缺陷检测、YOLOv5、注意力机制、SIoU、多尺度融合
42
TP391.41(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金
2024-02-23(万方平台首次上网日期,不代表论文的发表时间)
共9页
111-119