基于卷积推理的多跳知识图谱问答算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2022031703

基于卷积推理的多跳知识图谱问答算法

引用
多跳问题相比于简单问题更符合人们日常的提问方式,同时,研究多跳知识图谱问答(KGQA)算法有助于智能问答系统的推广.然而,现有的多跳KGQA方法在2~3跳问题和不完整知识图谱上的答案推理能力较弱.针对这一问题,本文提出基于卷积推理的多跳KGQA算法.首先,为了获取更具表示能力的问题嵌入向量,本文根据问题与关系的语义相似性提出结合字符特征和语义特征的问题嵌入模型;而后,为了增强算法的长链接推理能力,提出基于卷积神经网络(CNN)的答案推理模型来抽取嵌入向量的高阶信息.实验结果显示,相比于已有的5种算法,本文算法在MetaQA数据集的2跳和3跳问题答案预测准确率分别提高了1.7和1.3个百分点,在不完整知识图谱的2跳和3跳问题上分别提高了9.4和9.3个百分点.

知识图谱问答、知识图谱嵌入、语言模型、卷积神经网络

41

TP391.1(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;广西自然科学基金重点项目

2023-03-15(万方平台首次上网日期,不代表论文的发表时间)

共11页

102-112

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

41

2023,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn