基于SK-EfficientNet的番茄叶片病害识别模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2021120101

基于SK-EfficientNet的番茄叶片病害识别模型

引用
针对目前番茄叶片病害识别的深度学习模型网络参数量多、精确度低、移动端模型部署难的问题,提出一种基于SK-EfficientNet的番茄叶片病害识别方法.该方法采用轻量级模型EfficientNet作为基准模型,并利用选择性卷积核机制SKNet替换EfficientNet核心模块MBConv中的SENet,使得卷积核根据输入特征的多尺度信息自适应选择感受野大小,提高图像特征提取能力同时更有效地利用参数.多组对比实验结果显示,改进后的模型在训练精度上得到进一步提高,且模型参数仅为3.83 MiB.在PlantVillage数据集上平均准确率达到99.64%,且验证SK-EfficientNet-B2的识别精度最高;在自然场景下平均准确率较原模型提高3.81个百分点.结果表明,改进后模型能有效提高自然场景下番茄叶片病害识别精度,可为移动端部署番茄叶片病害识别模型提供参考.

番茄叶片、病害识别、EfficientNet网络、SKNet、MBConv

40

TP391.41(计算技术、计算机技术)

湖北省技术创新专项重大项目;湖北省科技重大专项;武汉市科技计划应用基础前沿项目

2022-08-11(万方平台首次上网日期,不代表论文的发表时间)

共11页

104-114

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

40

2022,40(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn