基于稀疏超高维非参数可加模型的条件独立筛选
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2021060919

基于稀疏超高维非参数可加模型的条件独立筛选

引用
变量筛选是处理超高维数据的一种有效方法.针对部分变量与响应变量显著相关,Barut等基于线性模型假定提出CSIS方法,能有效降低伪变量错选概率.但CSIS方法线性模型假定严苛,实际研究中有时不能事先确定模型结构.由此,本文基于非参数可加模型提出条件非参数独立筛选方法(CNIS),不需要对模型结构进行假定,增大了适用范围.同时,在适当条件下,证明本文方法第1阶段的筛选具有一致性筛选性质,能以概率1保留重要变量;第2阶段的变量选择也具有良好相合性.Monte Carlo数据模拟结果表明:相较于NIS方法,本文方法表现更好.

变量筛选;可加模型;变量选择;确定筛选

40

O212(概率论与数理统计)

国家自然科学基金;国家自然科学基金;广西高等学校千名中青年骨干教师培育计划资助项目

2022-02-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

100-107

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

40

2022,40(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn