基于深度学习的波浪能发电功率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2020.03.004

基于深度学习的波浪能发电功率预测

引用
针对波浪能发电中波高和频率的强随机性所导致的发电功率输出不稳定性问题,提出利用波浪能发电功率的预测数据,辅助储能系统(物理储能和化学储能)准确动作以平抑其波动性.预测数据是基于长短期记忆网络(long-short term memory,LSTM)和BP神经网络相结合的波浪能发电功率预测方法预测得到的.利用南海某岛两年天气数据和245 d的波浪能发电功率数据进行实验,训练并测试3个预测时间跨度LSTM-BP模型.对某波浪能发电船的功率在不同时间跨度的情况进行预测,实验结果表明,利用LSTM-BP模型可以较好地实现波浪能发电输出功率预测.

功率预测、波浪能、深度学习、LSTM-BP

38

TM743(输配电工程、电力网及电力系统)

国家自然科学基金;中国南方电网有限责任公司科技项目

2020-06-30(万方平台首次上网日期,不代表论文的发表时间)

共8页

25-32

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

38

2020,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn