基于损失函数融合的组排序学习方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2019.01.007

基于损失函数融合的组排序学习方法

引用
排序学习已经在信息检索和机器学习领域中获得了广泛的关注,一系列的排序学习理论主要是基于3种排序样本构造方法提出的,分别是:单文档方法(pointwise)、文档对方法(pairwise)、文档列表法(listwise).特别地,文档列表法中的组排序的方法可以有效地提高排序的性能.将这些方法与损失函数相结合来提高组排序的性能,基本思想是融合不同的损失函数来扩充基于神经网络方法的损失函数.首先,本文提出了一种基于J氏距离(Jeffrey's divergence)的组样本损失函数的构造方法;然后,基于该组排序的方法,提出了一种与其他损失函数进行融合框架,在LETOR3.0数据集上比较了所提出方法的性能;最后,实验结果表明所提出的加权损失函数融合方法能够有效地提高查询的相关性排序结果.

排序学习、信息检索、神经网络、损失函数、J氏距离

37

TP391(计算技术、计算机技术)

国家自然科学基金61602078,61572102,61402075;教育部人文社会科学研究基金16YJCZH128

2019-02-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

62-70

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

37

2019,37(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn