基于改进的SLIC区域合并的宫颈细胞图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16088/j.issn.1001-6600.2016.04.014

基于改进的SLIC区域合并的宫颈细胞图像分割

引用
针对现有细胞图像分割算法对噪声敏感,传统SLIC(simple linear iterative clustering)算法对边界分割不精确的问题,提出一种基于改进的SLIC融合区域合并的方法:首先对宫颈细胞图像进行均值漂移处理,消除细微噪声点;然后进行二维Otsu自适应阈值处理得到初始轮廓,应用SLIC算法得到超像素区域,并融合到原图中完成初始分割;最后,在初始分割图中进行初略标记获得交互信息,利用最大相似准则进行合并,不需要预先设定分割阈值,没有被标记的背景区域将成功合并到标记的背景区域,同时,没有被标记的目标区域会被识别出,有效地阻止与背景区域合并.对宫颈细胞图像进行大量的细胞质分割实验,结果表明本文算法能够在较短时间内准确识别出宫颈细胞的细胞质边缘.

超像素、图像分割、初始轮廓、区域合并、最大相似度

34

TP391.4(计算技术、计算机技术)

国家自然科学基金资助项目21327007;广西自然科学基金资助项目2013GXNSFBA019278

2017-04-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

93-100

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

34

2016,34(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn