10.3969/j.issn.1001-6600.2013.04.007
基于优化初始种子新策略的K-Means聚类算法
作为典型的启发式聚类算法,K-Means受到初始模型的影响而存在两个缺陷:算法对初始模型非常敏感和聚类效果差强人意.若给K-Means一个能够反映数据分布特征的初始种子集,这些种子既处于数据密集区域,又尽可能相互之间远离,这样一个初始模型对于提高启发式算法性能具有重要意义.本文据此给出距离密度混合选择(HYDD)种子优化方案的基本思路:对数据集进行密度排序,在此基础上选取密度大且满足距离大于密度直径的数据作为候选初始种子集,在候选初始种子集上,利用点点之间距离从大到小选取K个所需的种子,最后利用该初始种子集引导K-Means算法来搜索聚类结果.在5组仿真数据集和3组真实数据集上的实验结果表明,HYDD K-Means算法能够稳定的获取具备高内聚、高分离这一优良特征的聚类簇.
聚类、初始种子、启发式搜索、K-Means算法
31
TP301.6(计算技术、计算机技术)
国家自然科学基金资助项目61363037,61363074;广西自然科学基金资助项目2011GXNSFD018025;广西自然科学青年基金资助项目2012GXNSFBA053161
2014-03-14(万方平台首次上网日期,不代表论文的发表时间)
共8页
33-40