基于SVM短时交通流量预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-6600.2012.04.002

基于SVM短时交通流量预测

引用
交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用.但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测.随着机器学习和数据挖掘各种理论的不断提出及完善,机器学习和数据挖掘与交通流量预测的结合是智能交通系统未来发展的一个重要方向.本文利用SVM (support vector machine)构建了短时交通流量预测模型,并利用遗传算法(genetic algorithm)对SVM的惩罚参数C和核参数σ进行优化,同时比较SVM中不同核函数,包括多项式核函数(polynomial kernel)和径向基核函数(RBF kernel)的预测效果.径向基SVM (RBF SVM)训练时间要比多项式SVM (polynomial SVM)短,预测准确率和精度也要比多项式SVM要好.从仿真结果上看,SVM非常适合应用于短时交通流量预测,能够取得很好的预测效果与精度.

SVM、交通流量、短时预测、遗传算法

30

U491(交通工程与公路运输技术管理)

青年科学基金资助项目51108191

2013-03-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

13-17

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

30

2012,30(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn