一种基于最小距离分类器的恶意代码检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-6600.2009.03.044

一种基于最小距离分类器的恶意代码检测方法

引用
恶意代码是构成互联网威胁的新根源,至今传统的病毒查杀方法对此也无法根治.未知恶意代码每月呈几何倍的速度增长,人们依赖的防范手段多是手工分析,其效率有限且花费巨大.阐述了基于最小距离分类器的未知恶意代码检测方法,它对未知恶意代码有着良好的判定能力,能够有效地区分病毒与可信程序.对自定义的恶意代码行为进行建模,并通过实验发现,经过改进的最小距离分类器除了良好的分类精度外,其计算代价较其他非线性方法小,因此该模型在实际反病毒工作中有较高的实战价值.

恶意代码行为、标准化欧氏距离、特征统计空间、Youden指数

27

TP393.08(计算技术、计算机技术)

国家自然科学基金资助项目69985004

2009-11-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

183-187

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

27

2009,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn