基于可疑实例影响度分析改进的C4.5 rules算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-6600.2007.04.013

基于可疑实例影响度分析改进的C4.5 rules算法

引用
决策树学习算法是数据挖掘中一类经典的分类算法.传统的决策树学习算法把数据集合中的实例同等对待,而忽略了实例之间存在的可疑性和影响度差异,导致错误实例扭曲了学习结果,严重影响学习质量.在此提出基于可疑实例影响度分析改进的C4.5 rules算法,在给定一个噪音集合后,首先把可疑实例与原集合划分开,并对可疑实例的影响度进行分析和度量,然后依据分类规则对可疑实例的覆盖情况进行重新排序和分类预测.算法在对分类规则重排序后将错误实例对学习结果的影响最小化,得出尽可能接近正确数据的学习结果.将此算法与经典的C4.5 rules算法进行实验比较,结果表明该算法有着良好的性能.

数据挖掘、决策树、可疑实例、影响度度量

25

TP18(自动化基础理论)

安徽省自然科学基金050420207

2007-12-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

51-54

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

25

2007,25(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn