粗糙集连续属性离散化的SOM网络方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-6600.2006.04.012

粗糙集连续属性离散化的SOM网络方法

引用
基于Rough Set理论中的不可分辨性原理,给出两个新的定义:属性的最大区分值(Maximum Discernibility Value,MDV)和属性冗余度(Attribute Redundancy Rate,ARR).在数据预处理阶段,属性的MDV数值用于确定关于自组织映射网络SOM输出单元数量的启发式搜索策略;属性冗余度则用于衡量属性约简结果的信息冗余程度,并以此作为优化SOM网络输出层结构的依据.不依赖于领域经验知识,建立了MDV、SOM、ARR的组合算法模型,实现了Rough Set理论中连续属性的自动离散化计算,并明显提高了属性约简的速度.最后,通过项目实例对全过程进行有效验证.

SOM、rough set、属性可分辨性、聚类、机器学习

24

TP18(自动化基础理论)

Sino-German Goverment Cooperation Project2002DFG00027

2006-11-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

46-49

相关文献
评论
暂无封面信息
查看本期封面目录

广西师范大学学报(自然科学版)

1001-6600

45-1067/N

24

2006,24(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn