CT图像融合专家知识的肺结节良恶性诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-8978.2023.07.024

CT图像融合专家知识的肺结节良恶性诊断方法

引用
针对当前卷积神经网络在医学CT图像肺部结节分类中存在图像特征提取不全面,导致分类准确度低且检测时间长的问题,提出了一种基于深度网络特征融合的分类检测网络(efficient selective convolutional network,ESC-Net),网络是以EfficientNet-V1为基础框架,在 MBConv(mobile inverted residual bottleneck convolution)结构中引入轻量级注意力机制,同时,为降低网络的参数量和FLOPs,删去3层 MBConv结构,进一步增强了特征提取和分类能力,适合于实际应用场景中快速、精准地诊断恶性结节.结果表明,在LIDC-IDRI数据集上,方法实现了对肺结节良恶性的精确分类,分类准确率和AUC值分别达到了94.6%与98.3%,优于大部分主流的分类方法.

CT图像、肺部结节、LIDC-IDRI、EfficientNet

42

TN2(光电子技术、激光技术)

江苏高校哲学社会科学研究项目;上海市分子影像学重点实验室开放课题项目

2023-09-06(万方平台首次上网日期,不代表论文的发表时间)

共7页

181-187

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

42

2023,42(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn