优化SVM模型在泥石流易发性中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2304835

优化SVM模型在泥石流易发性中的应用

引用
泥石流灾害是我国最常发生且危害最大的地质灾害之一,因此实现有效、准确的泥石流灾害预测对于人类的生活和生产具有重大意义.研究以四川省石棉县为研究区域,选取 12 个泥石流影响因子.同时针对传统支持向量机模型精度不高的问题,采用遗传算法、粒子群算法、秃鹰搜索算法以及新型的群智能优化算法—麻雀搜索算法等 4 种算法来优化支持向量机的超参数 C和gamma.通过优化后的支持向量机模型建立泥石流易发性评价模型,同时对比随机森林模型与人工神经网络模型,最后采用受试者工作特征曲线来评价预测模型.研究结果表明,4种优化算法均能有效提高预测准确度,但麻雀搜索算法优化的支持向量机模型具有更高的准确度和受试者工作特征曲线下面积,分别为 0.9573和 0.98,并在泥石流易发性分区图中得到验证.因此,麻雀搜索算法优化的支持向量机模型在泥石流易发性评价研究中更为适用.

泥石流易发性、支持向量机、遗传算法、粒子群算法、秃鹰搜索算法、麻雀搜索算法

42

TP181;P642.23(自动化基础理论)

三峡库区地质环境监测与灾害预警重庆市重点实验室开放基金项目ZD2020A0302

2023-08-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

163-170

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

42

2023,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn