基于故障树和贝叶斯网络的锂电池模组产线故障诊断方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2304837

基于故障树和贝叶斯网络的锂电池模组产线故障诊断方法研究

引用
针对高柔性生产线故障排查困难等问题,提出了一种故障树分析和贝叶斯网络结合的动力锂电池模组生产线故障诊断方法.首先,通过分析生产线机械结构和工艺流程,结合收集的故障案例,构建自动上料工位的故障树,对故障进行定性分析;其次,使用Netica软件将故障树模型转化为贝叶斯网络模型,对故障进行定量分析;最后,将企业实际故障案例代入故障树进行验证对比.验证结果表明,故障树分析和贝叶斯网络相结合的故障诊断方法准确率达到 91.04%,能够实现对整条生产线的故障诊断,诊断过程中不断迭代完善的贝叶斯网络模型可为后续生产工艺的改进提供依据.

故障诊断、故障树分析法、贝叶斯网络、生产线、Netica

42

TP277(自动化技术及设备)

江苏省重点研发计划;常州市5G+工业互联网融合应用重点实验室;江苏理工学院研究生实践创新计划项目

2023-08-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

156-162

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

42

2023,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn