基于KPCA-SSA-GRNN的滑坡预报模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2203939

基于KPCA-SSA-GRNN的滑坡预报模型

引用
滑坡灾害的发生受多种因素的影响,传统预报方法通常基于单一影响因素进行建模,预报精确度不高.为了提高滑坡发生概率预报精度,提出一种核主成分分析-麻雀搜索算法-广义回归神经网络(KPCA-SSA-GRNN)混合预测模型.首先,利用KPCA,筛选影响滑坡的主要致灾因子,并将其作为GRNN模型的输入;其次,为提高GRNN模型的预测效果,采用SSA算法对GRNN模型的光滑因子σ进行寻优;最后,对优化后的GRNN模型进行测试,输出滑坡灾害概率,并确定滑坡危险等级.以陕西省山阳县为研究区域,利用KPCA-SSA-GRNN模型进行预测,并将该模型预测结果与改进前的GRNN模型和传统的BP神经网络模型、RBF神经网络模型进行对比,结果表明,该模型在预报精度方面优于其他模型,对于滑坡预报提供了一定的理论参考.

核主成分分析法、广义回归神经网络、麻雀搜索算法、滑坡危险等级

41

P642.22(水文地质学与工程地质学)

陕西省技术创新引导专项;陕西省技术创新引导专项;陕西省自然科学基础研究计划项目

2022-11-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

109-115

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

41

2022,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn