基于初始聚类中心选取的改进K-means算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2203817

基于初始聚类中心选取的改进K-means算法

引用
基于传统的K-均值(K-means)聚类算法,提出了一种通过优化初始聚类中心选取的改进K-均值聚类算法.改进之后的方法,首先计算所有数据中任意两点间的欧氏距离,通过比较距离大小,选取最小时的其中一点作为第1个初始聚类中心,在剩余的数据中,选择尽可能远离该点的数据点作为第2个初始聚类中心,依此类推,直至找到需要的 k个点,然后再根据K-均值聚类算法迭代更新聚类中心,当达到最大迭代次数时停止.使用误差平方和(SSE)作为算法的评估标准,通过实验可知,提出的方法与传统的K-means聚类算法相比稳定性和准确率等方面有所提高.

K-means算法、初始聚类中心选取、最小距离、SSE

41

TP181;TN957(自动化基础理论)

上海市自然科学基金;大数据协同安全国家工程实验室项目

2022-11-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

54-59

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

41

2022,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn