基于多尺度边缘提取和加权卷积稀疏编码的低剂量CT去噪算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2204070

基于多尺度边缘提取和加权卷积稀疏编码的低剂量CT去噪算法

引用
大多数现有的基于卷积神经网络的低剂量计算机断层扫描(LDCT)去噪算法像一个"黑匣子",优化过程缺乏直观的逻辑性,而且容易产生模糊的结果.为了解决这些问题,提出一种结合加权卷积稀疏编码和卷积神经网络的可解释的LDCT去噪模型.该模型考虑卷积稀疏特征图与噪声/伪影分布的关联,在目标函数上给卷积稀疏特征图附加可学习的权重,利用加权迭代软阈值算法寻求目标函数的最优解.用通道注意力来学习卷积稀疏特征图上附加的权重,用设计的多尺度边缘提取模块解决因丢失纹理细节而导致的图像模糊问题.在AAPM公开数据集上的实验结果表明,相对于几种领先的去噪算法,所提算法对噪声/伪影的抑制效果明显,去噪结果保留了更多的纹理细节.

低剂量CT、加权卷积稀疏编码、卷积神经网络、通道注意力、多尺度边缘提取

41

TP391(计算技术、计算机技术)

国家自然科学基金;山西省高等学校科技创新项目

2022-11-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

9-15

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

41

2022,41(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn