基于优化聚类分解与XGBOOST的超短期电力负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2203706

基于优化聚类分解与XGBOOST的超短期电力负荷预测

引用
电力负荷预测是制定发电计划和确保电网稳定运行的基础,为提高电力负荷预测精度,提出一种基于优化聚类分解与极限梯度提升(XGBOOST)的超短期电力负荷预测方法.一方面针对模糊C均值聚类(FCM)不能自动选择聚类数问题提出一种均值漂移(Mean Shift)优化FCM的优化聚类(MF);另一方面为减小电力负荷数据随机性对电力负荷预测的影响,提出一种结合MF、自适应噪声的完全集成经验模式分解(CEEMDAN)、XGBOOST的MFCX(MF-CEEMDAN-XGBOOST)的超短期负荷预测模型.首先使用Mean Shift搜寻到的最佳聚类数和聚类中心替换FCM的聚类数和初始聚类中心,对负荷数据聚类,然后采用CEEMDAN分解得到较为平稳的负荷分量,最后使用XGBOOST对新的负荷序列分别预测后进行模态重构得到最终预测结果.使用Python语言搭建模型进行实例分析与不同模型对比,MFCX有较低的预测误差,从而验证了模型的有效性.

超短期电力负荷预测、自适应噪声的完全集成经验模式分解、均值漂移、极限梯度提升、模糊C均值聚类

41

TM715(输配电工程、电力网及电力系统)

2022-09-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

46-51

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

41

2022,41(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn