基于SVM与改进型乌鸦搜索算法的风电功率预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2103570

基于SVM与改进型乌鸦搜索算法的风电功率预测方法

引用
针对如何提高风力发电功率预测的准确率,研究设计了一种基于改进乌鸦搜索算法(ICSA)优化支持向量机(SVM)的风电功率预测模型.在乌鸦搜索算法的基础上引入高斯变异算子和差分变异策略,提出改进型乌鸦搜索算法,并将之与支持向量机相结合,搭建ICSA-SVM风电功率预测模型.使用该模型,所得预测结果的均方根误差、平均绝对误差、平均绝对百分比误差等指标的值分别为4.42%、3.56%和5.22%.结果表明ICSA-SVM模型可实现参数优化,并有效提升了预测精度.研究成果可服务于含风能的电力系统日前调度,对推广清洁能源、实现碳达峰和碳中和具有重要意义.

风电功率预测、改进型乌鸦搜索算法、高斯变异、差分变异、支持向量机

41

TM614(发电、发电厂)

天津市自然科学基金;河北省自然科学基金

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

40-45

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

41

2022,41(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn