基于卷积神经网络的农作物病害识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2102861

基于卷积神经网络的农作物病害识别研究

引用
随着深度学习以及图像识别技术的不断发展,图像识别技术的应用越来越广,其中就包括农作物病害的识别.已有的成熟神经网络架构多数是为了识别大的数据集而设计,拥有大量参数从而导致占用大量存储空间、运行时间较长,难以在存储空间与处理器性能有限的移动设备上使用,以及在农作物病害识别研究中,部分农作物病害的样本量较少.针对上述问题,采用轻量化的卷积神经网络和较少的叶片样本,最终训练出识别精度较为理想的模型.相同精度下,轻量化模型仅为普通模型的1/10,最终训练完成的模型大小仅为1.5~4.5 MB,并使用目前应用较少的激活函数GELU替换常用的ReLU,模型收敛效果更好,提高了识别精度,最终可以达到95%.模型复杂度也远远小于普通卷积神经网络模型,极大程度的减少了内存的消耗、减少了计算量,可以很好的提高农业监测中智能装置的性能.

卷积神经网络;GhostNet;农作物病害;图像分类

40

TP391.4(计算技术、计算机技术)

国家科技重大专项2016YFD0300201

2021-12-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

93-99

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

40

2021,40(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn