基于特征融合的脑部图像多级分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2002251

基于特征融合的脑部图像多级分类

引用
目前医学图像数量巨大,利用计算机处理医学图像从而辅助医疗诊断是医学领域研究的热点.根据脑部图像具有对称性的特点,选择支持向量机一递归特征消除(SVM-RFE)算法对融合特征进行特征选择过程中,引入Pearson系数衡量特征信息的冗余度,将特征相关性指标融入SVM-RFE特征子集的筛选标准中,提升了融合特征的分类性能.在一级分类基础上,基于特征学习方法,构建了2Layer-RBM-KNN二级脑部图像分类模型,增加网络深度以进行更高层次的特征抽象,并且结合数据集探究了分类器的选择,实现样本再分类.

脑部图像识别分类、特征融合、RBM、KNN

39

TN957.52+9;TP83

2021-03-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

28-33

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

39

2020,39(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn