融合连续域蚁群算法One-Class SVM的电力离群用户检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19652/j.cnki.femt.2002058

融合连续域蚁群算法One-Class SVM的电力离群用户检测

引用
连续域蚁群优化算法是蚁群优化算法的主要研究方向.通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法.在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户,并对其他算法的测试结果进行了比较和分析,以验证所提出算法的正确性和有效性.

蚁群算法、One-Class、SVM、离群检测、电力离群

39

TM76(输配电工程、电力网及电力系统)

2020-09-30(万方平台首次上网日期,不代表论文的发表时间)

共7页

148-154

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

39

2020,39(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn