单一电能质量扰动的分类识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-8978.2016.07.014

单一电能质量扰动的分类识别研究

引用
电能质量扰动的分类识别对电能质量综合治理具有重要意义,为此提出了一种基于粒子群优化极限学习机的电能质量扰动分类新方法.利用小波变换将扰动信号做10层分解,提取有效区分扰动信号类型层数的能量差、能量差平均值及能量差的标准差作为特征向量,并将扰动信号与正常信号的均方根作为补充,减少输入向量维度.提出采用极限学习机训练误差作为粒子群的适应度函数来优化隐含层神经元个数,在提升分类速度的基础上保持较高的分类精度.经仿真验证表明,该方法能够准确有效地识别常见的7种扰动类型,相比于传统的BP神经网络具有较高的分类速度.

电能质量、分类识别、极限学习机、隐含层个数、粒子群算法

35

TN911

国家自然科学基金51307184

2016-10-09(万方平台首次上网日期,不代表论文的发表时间)

共4页

56-59

相关文献
评论
暂无封面信息
查看本期封面目录

国外电子测量技术

1002-8978

11-2268/TN

35

2016,35(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn