基于时序模型的高炉煤气发生量多步预测对比
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13228/j.boyuan.issn0449-749x.20220166

基于时序模型的高炉煤气发生量多步预测对比

引用
为准确预测高炉正常工况及变工况(如休风、减产、停产等)条件下的煤气发生量,采用长短记忆模型(LSTM)和季节性差分自回归模型(SARIMA)预测了不同工况下的高炉煤气发生量.对比了正常工况下两模型不同预测步数的预测效果,发现随着预测步数的增加,两模型预测精度总体呈减小趋势,并且LSTM模型的预测精度普遍高于SARIMA模型;为提高模型精度,还对比了 30步预测条件下不同输入样本量对模型的预测影响,结果表明,SARIMA模型最佳输入样本量为200个左右,对应平均相对误差为0.057 0,LSTM模型最佳输入样本量为100个左右,对应平均相对误差为0.042 8,因此,正常工况下LSTM模型预测效果更好;而变工况条件下SARIMA模型效果更好,SARIMA模型的平均相对误差为0.069 4,LSTM模型为0.094 0.结合两模型的优势,建立了梯度驱动时序预测复合模型,该模型在复合工况下30步预测平均相对误差为0.060 1,均低于两模型单独使用时的误差,因此在现场运行时,建议使用梯度驱动时序预测复合模型进行预测,这为高炉煤气调控提供了更好的数据支持,合理分配煤气提高煤气利用率,减小煤气放散.

高炉煤气预测、时序预测、长短记忆模型、季节性差分自回归移动平均、多步预测

57

TP391;TP183;F224

国家重点研发计划2020YFB1711100

2022-09-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

166-172

相关文献
评论
暂无封面信息
查看本期封面目录

钢铁

0449-749X

11-2118/TF

57

2022,57(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn