改进的KNN分类异常点检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-6375.2022.01.003

改进的KNN分类异常点检测方法

引用
针对入侵检测中异常点误报率较高的问题,提出了改进KNN与异常点检测算法相结合来处理数据的方法,以降低入侵检测误报率.该方法首先采用卡方特征选择方法进行数据特征选择,其次采用孤立森林、距离、局部异常因子(IDL)结合查找出异常点,然后使用SMOTE平衡数据,使得所有的样本达到一个类平衡状态,再采用KNN分类.最后采用公开数据集NSL-KDD进行对于改进KNN异常点检测方法的有效性验证.实验结果表明,采用改进的KNN分类异常点检测方法进行检测,降低了误报率.

特征选择、孤立森林算法、NSL-KDD

51

TP391(计算技术、计算机技术)

2022-04-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

8-11

相关文献
评论
暂无封面信息
查看本期封面目录

甘肃科技纵横

1672-6375

62-1173/N

51

2022,51(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn