基于异常点挖掘的聚类算法比较研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-691X.2008.01.026

基于异常点挖掘的聚类算法比较研究

引用
随着人们对数据质量、欺诈检测、网络入侵、故障诊断、自动军事侦察等问题的关注,异常点挖掘在信息科学研究领域日益受到重视.本文首先给出异常点的定义,并在聚类分析的基础上对PAM算法、BIRCH算法、DBSCAN算法和CURE算法在算法效率、适合的数据类型、发现的聚类类型、对异常数据的敏感性、空间复杂性、时间复杂性、使用的方法等方面进行了比较研究,最后给出了如何使用这些聚类算法处理异常点的方法.

异常点、数据挖掘、聚类

22

TP311(计算技术、计算机技术)

2008-04-14(万方平台首次上网日期,不代表论文的发表时间)

共4页

87-90

相关文献
评论
暂无封面信息
查看本期封面目录

甘肃联合大学学报(自然科学版)

1672-691X

62-1182/N

22

2008,22(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn