小波分析的茶鲜叶全氮含量高光谱监测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2022)10-3235-08

小波分析的茶鲜叶全氮含量高光谱监测

引用
茶是世界上最受欢迎的饮料之一,而氮素(N)是影响茶叶品质的主要成分之一,因此快速准确地估算N素含量至关重要.由于测定N含量的化学方法繁琐耗时,利用高光谱对茶鲜叶中N含量进行预测,利用连续小波转换(CWT)提取的小波系数,探究CWT不同分解层数对于N素含量的估测能力,并讨论了不同波长选择算法所建模型的预测效果.首先,采集广东省英德市茶园的151个茶鲜叶样品高光谱数据,将获得的原始光谱通过卷积平滑(SG)、去趋势(Detrending)、一阶导数(1st)、多元散射校正(MSC)和标准正态变量变换(SNV)五种预处理方法进行预处理并作为参考.其次,采用连续小波对原始光谱进行初步处理生成多尺度小波系数,并进行相关性分析,分别利用连续投影算法(SPA)、竞争性自适应加权采样法(CARS)和变量组合集群分析(VCPA)方法进一步优化CWT变换后光谱数据的变量空间,最后,以特征变量为输入使用PLSR建立了N素定量监测模型,并对比不同尺度不同方法估算N素的效果.结果表明,连续小波分析方法可有效提升茶鲜叶光谱对N素含量的估测能力,明显优于常规光谱处理方法.经连续小波分解后,对茶鲜叶N素的预测能力随分解尺度的增加整体呈逐步降低的趋势,其中在1~6尺度连续小波变换后的光谱与茶鲜叶N素存在良好的相关性,表明小尺度的连续小波分解可有效应用于茶鲜叶N含量的监测.基于CWT(1)-VCPA方法建立的模型精度最高,且变量数相比于全波段减少了99.34%,其建模与预测R2达到0.95和0.90,相比于传统光谱处理方法,精度提升了11%,证明CWT-VCPA可以有效降低光谱维度并大幅提升模型精度.实现了茶叶N素含量的高效量化预测,为评估茶叶的其他成分提供了可靠技术参考.

茶鲜叶、氮素、连续小波变换、高光谱、变量组合集群分析

42

S56(经济作物)

国家自然科学基金21974012

2022-10-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

3235-3242

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

42

2022,42(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn