10.3964/j.issn.1000-0593(2022)10-3235-08
小波分析的茶鲜叶全氮含量高光谱监测
茶是世界上最受欢迎的饮料之一,而氮素(N)是影响茶叶品质的主要成分之一,因此快速准确地估算N素含量至关重要.由于测定N含量的化学方法繁琐耗时,利用高光谱对茶鲜叶中N含量进行预测,利用连续小波转换(CWT)提取的小波系数,探究CWT不同分解层数对于N素含量的估测能力,并讨论了不同波长选择算法所建模型的预测效果.首先,采集广东省英德市茶园的151个茶鲜叶样品高光谱数据,将获得的原始光谱通过卷积平滑(SG)、去趋势(Detrending)、一阶导数(1st)、多元散射校正(MSC)和标准正态变量变换(SNV)五种预处理方法进行预处理并作为参考.其次,采用连续小波对原始光谱进行初步处理生成多尺度小波系数,并进行相关性分析,分别利用连续投影算法(SPA)、竞争性自适应加权采样法(CARS)和变量组合集群分析(VCPA)方法进一步优化CWT变换后光谱数据的变量空间,最后,以特征变量为输入使用PLSR建立了N素定量监测模型,并对比不同尺度不同方法估算N素的效果.结果表明,连续小波分析方法可有效提升茶鲜叶光谱对N素含量的估测能力,明显优于常规光谱处理方法.经连续小波分解后,对茶鲜叶N素的预测能力随分解尺度的增加整体呈逐步降低的趋势,其中在1~6尺度连续小波变换后的光谱与茶鲜叶N素存在良好的相关性,表明小尺度的连续小波分解可有效应用于茶鲜叶N含量的监测.基于CWT(1)-VCPA方法建立的模型精度最高,且变量数相比于全波段减少了99.34%,其建模与预测R2达到0.95和0.90,相比于传统光谱处理方法,精度提升了11%,证明CWT-VCPA可以有效降低光谱维度并大幅提升模型精度.实现了茶叶N素含量的高效量化预测,为评估茶叶的其他成分提供了可靠技术参考.
茶鲜叶、氮素、连续小波变换、高光谱、变量组合集群分析
42
S56(经济作物)
国家自然科学基金21974012
2022-10-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
3235-3242