基于图像和光谱融合的脐橙货架期高光谱成像无损检测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2022)06-1792-06

基于图像和光谱融合的脐橙货架期高光谱成像无损检测研究

引用
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别.分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正.从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值.利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型.当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%.当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%.当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%.实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%.利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础.

高光谱、无损检测、脐橙、货架期

42

O657.3(分析化学)

国家自然科学基金;水果光电检测技术能力提升项目

2022-06-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

1792-1797

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

42

2022,42(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn