高光谱反射率的滨海地区土壤全磷含量反演
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2022)02-0517-07

高光谱反射率的滨海地区土壤全磷含量反演

引用
反射光谱在近年来广泛应用于土壤属性的估算.作为一种有效估算土壤全磷含量的手段,反射光谱技术可以很大程度上减少传统化学测量方法所损耗的人力物力.以江苏滨海土壤为研究对象,在30个采样点采集了共147个土样,测量土壤样品光谱反射率及全磷含量.利用原始光谱反射率数据及6种不同的光谱变换结果,通过随机抽样(RS)、KS、SPXY三种样本集划分方法,基于偏最小二乘回归(PLSR)和支持向量机(SVM)方法分别建立土壤全磷含量的估算模型,对比分析了三种样本集划分方法对估算结果精度的影响.结果表明:(1)以原始光谱反射率为数据,PLSR模型,RS方法在多数情况下可以获得较为稳定的模型精度,明显优于KS和SPXY方法;在SVM模型中,采用SPXY方法获得的模型结果最优,KS次之,RS结果最差.(2)不同的样本集划分方法所合适的光谱变换方法不同,对于三种划分样本集方法,PLSR和SVM对应的最优光谱变换分别是对数的倒数和一阶导数(KS方法),原始光谱和一阶导数(RS方法),一阶导数和多元散射校正(SPXY方法).其中采用KS方法划分样本集,PLSR和SVM均能获得最佳的预测结果.并非所有光谱变换方法都可以提高模型精度,部分光谱变换后PLSR模型预测精度显著降低;(3)在所有的样本集划分方法中,SVM的建模效果优于PLSR,采用RS方法划分样本集,PLSR的预测精度高于SVM,而采用KS和SPXY方法划分样本集,SVM的预测精度整体高于PLSR.综上所述,本研究区域估算土壤全磷含量的最佳模型是基于KS样本集划分方法和一阶导数光谱变换建立的SVM模型,此时拟合优度(R2p)为0.82.结果表明反射光谱可以对滨海地区的土壤全磷含量进行有效预测,对土壤磷元素的高效快速反演具有一定的指导意义.

全磷;反射光谱;光谱变换;样本划分方法;偏最小二乘回归;支持向量机

42

S153.6(土壤学)

国家自然科学基金;国家自然科学基金

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

517-523

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

42

2022,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn