可见近红外光谱的甘蓝叶片毒死蜱农药残留定性分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2022)01-0080-06

可见近红外光谱的甘蓝叶片毒死蜱农药残留定性分析

引用
有机磷农药毒死蜱是目前农业生产中使用最广泛的农药之一,但有机磷农药过度使用导致的农药残留却给自然环境和人类生命健康造成严重威胁,因此,开发一种快捷、准确、经济的毒死蜱农药在农产品表面残留的直接检测方法意义重大.配制4组不同体积浓度(1:200,1:500,1:800,1:1000)的毒死蜱农药溶液,对照组为纯净水,分别浸泡甘蓝叶片3 min,每组采集30个叶片样本,5组共计150个样本.采用可见近红外光谱仪获取其谱图信息,然后开展不同浓度毒死蜱农药在甘蓝叶片上残留的可见近红外光谱定性分析研究.建模时,将每组数据中24个样本,5组共计120个样本作为建模训练集,剩下每组6个样本,5组共计30个样本作为预测集.鉴于甘蓝叶面不平整、皱褶较多,叶片颜色深浅不一等因素会给近红外光谱分析带来干扰,给预测模型的建立增加难度,提出一种光谱全波段平均分组积分(求和)预处理方法,将光谱波段平均分成n组,再对分组后每组数据积分求和,用预处理后的数据训练BP神经网络.实验表明,光谱全波段平均分组积分(求和)预处理方法,对光谱反射率一阶导数(FD)且分组数为25的神经网络训练效果最好,建模集识别准确率为97.50%,预测集识别准确率为96.67%,建模效果优于通常采用的提取光谱敏感、特征波段建模方法(建模集识别准确率为91.67%).光谱全波段平均分组积分预处理方法在保留光谱数据更多特征波段的同时探索更多潜在敏感波段,能够降低光谱数据维度,减小单个光谱数据噪声对建模效果的影响,选择合适的分组数n,能取得较好的建模预测效果.

可见近红外光谱;定性分析;有机磷农药残留;毒死蜱;甘蓝

42

O657.3(分析化学)

国家重点研发计划2018YFD0700300

2022-01-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

80-85

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

42

2022,42(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn