10.3964/j.issn.1000-0593(2022)01-0080-06
可见近红外光谱的甘蓝叶片毒死蜱农药残留定性分析
有机磷农药毒死蜱是目前农业生产中使用最广泛的农药之一,但有机磷农药过度使用导致的农药残留却给自然环境和人类生命健康造成严重威胁,因此,开发一种快捷、准确、经济的毒死蜱农药在农产品表面残留的直接检测方法意义重大.配制4组不同体积浓度(1:200,1:500,1:800,1:1000)的毒死蜱农药溶液,对照组为纯净水,分别浸泡甘蓝叶片3 min,每组采集30个叶片样本,5组共计150个样本.采用可见近红外光谱仪获取其谱图信息,然后开展不同浓度毒死蜱农药在甘蓝叶片上残留的可见近红外光谱定性分析研究.建模时,将每组数据中24个样本,5组共计120个样本作为建模训练集,剩下每组6个样本,5组共计30个样本作为预测集.鉴于甘蓝叶面不平整、皱褶较多,叶片颜色深浅不一等因素会给近红外光谱分析带来干扰,给预测模型的建立增加难度,提出一种光谱全波段平均分组积分(求和)预处理方法,将光谱波段平均分成n组,再对分组后每组数据积分求和,用预处理后的数据训练BP神经网络.实验表明,光谱全波段平均分组积分(求和)预处理方法,对光谱反射率一阶导数(FD)且分组数为25的神经网络训练效果最好,建模集识别准确率为97.50%,预测集识别准确率为96.67%,建模效果优于通常采用的提取光谱敏感、特征波段建模方法(建模集识别准确率为91.67%).光谱全波段平均分组积分预处理方法在保留光谱数据更多特征波段的同时探索更多潜在敏感波段,能够降低光谱数据维度,减小单个光谱数据噪声对建模效果的影响,选择合适的分组数n,能取得较好的建模预测效果.
可见近红外光谱;定性分析;有机磷农药残留;毒死蜱;甘蓝
42
O657.3(分析化学)
国家重点研发计划2018YFD0700300
2022-01-12(万方平台首次上网日期,不代表论文的发表时间)
共6页
80-85