10.3964/j.issn.1000-0593(2021)09-2657-08
无人机成像高光谱的马铃薯地上生物量估算
地上生物量(AGB)的精准监测是农田生产管理的重要环节,因此快速准确地估算AGB,对于精准农业的发展十分重要.传统上,获取AGB的方法是采用破坏性取样法,这使得大面积、长期的测量变得困难.无人机高光谱遥感因具有机动性强、光谱分辨率高和图谱合一的优势,成为当前估算大面积作物AGB最有效的技术手段.该研究通过无人机平台搭载成像高光谱传感器分别获取马铃薯块茎形成期、块茎增长期、淀粉积累期的冠层高光谱影像以及利用烘干称重法获取相应生育期实测AGB数据.然后,采用相关性分析法(CAM)、随机蛙跳算法(RFM)和高斯过程回归波长分析工具(GPR-BAT)分别筛选冠层原始光谱(COS)和一阶导数光谱(FDS)的敏感波长,结合偏最小二乘回归(PLSR)和高斯过程回归(GPR)构建各生育期的AGB估算模型,并对比不同模型的估测效果.结果显示:(1)基于同种方法分别筛选COS和FDS的特征波长,结合2种回归技术估算AGB的效果均从块茎形成期到淀粉积累期由好变差.(2)基于FDS分别通过3种方法筛选的特征波长,通过同种回归技术构建的模型效果要优于基于COS的相应效果.(3)基于COS和FDS使用CAM,RFM和GPR-BAT方法筛选的特征波长个数在块茎形成期分别为28,12,6个和12,23,10个,在块茎增长期分别为32,8,2个和18,28,4个,在淀粉积累期分别为30,15,3个和21,33,5个.(4)各生育期基于COS和FDS通过3种方法筛选的敏感波长估算AGB效果由高到低依次均为GPR-BAT,RFM和CAM.(5)各生育期基于FDS通过GPR-BAT方法筛选的敏感波长,结合PLSR建立的模型精度更高、稳定性更强,R2分别为0.67,0.73和0.65,NRMSE分别为16.63%,15.84% 和20.81%.研究表明利用无人机高光谱成像技术可以准确地估算AGB,这为实现马铃薯作物长势动态监测,提供科学指导和参考.
马铃薯、无人机、成像高光谱、随机蛙跳、高斯过程回归、地上生物量
41
S25(农业航空)
广东省重点领域研发计划项目;国家自然科学基金项目
2021-09-18(万方平台首次上网日期,不代表论文的发表时间)
共8页
2657-2664