10.3964/j.issn.1000-0593(2021)06-1730-07
GWLS-SVR模型的红枣树叶片叶绿素含量估算
叶绿素含量是红枣树光合作用能力、生长状况、营养状况的指示剂,不同地理位置种植的红枣树受到自然、人为等因素的影响,叶绿素含量分布有所不同,该研究实地测定了若羌县枣树叶片高光谱反射率及表征叶绿素含量的枣树叶片SPAD(soil plant analysis development)值.为了高效无损地估算红枣树叶片SPAD值,计算了红枣树叶片SPAD值全局莫兰指数,以SPAD值和高光谱波段之间的相关性为基础,通过CP统计量计算重要程度高的特征波段,运用地理加权最小二乘支持向量回归GWLS-SVR(geographically weighted least squares-support vector regression)模型对红枣树叶片SPAD值进行预测,与多元线性回归(MLR)、支持向量机回归(SVR)模型比较并探讨GWLS-SVR模型估算红枣树叶片SPAD值的能力.结果表明:(1)光谱一阶导数可以有效去除噪声并突出光谱信息尤其是492~510,542~543,642~652,657~670和682~692 nm区间内显著的提高了与SPAD值的相关性.(2)CP统计量方法能够有效的选择敏感区间的特征波段,进而提高模型估算精度,由统计量方法计算出原始光谱重要程度最高的两个变量为595与696 nm,光谱一阶导数的特征波段为688 nm.其中对于同一个敏感波段区间的波段组合总有单个波段的统计量低于多个波段组合的统计量,这可能是相近波段间的较强共线性导致的.(3)若羌县红枣树叶片SPAD值存在显著的空间聚集性,全局莫兰指数为0.1258(p<0.1),适合建立考虑空间位置的GWLS-SVR模型.(4)结合Bootstrap再抽样与t检验模型检验得到结合地理位置信息的GWLS-SVR模型总体上估算能力优于SVR和MLR模型,且结果高度显著(p<0.001),其中基于光谱一阶导数的GWLS-SVR模型为最优的红枣树叶片SPAD值估算模型(R2为0.975,MSE为1.082),能够为高光谱定量反演红枣树SPAD值进而快速无损的监测红枣生长状况提供一定参考.
叶绿素含量、GWLS-SVR模型、高光谱、红枣树、Bootstrap再抽样、t检验、SPAD值
41
TP79(遥感技术)
国家自然科学基金;新疆特色林果业典型树种分布遥感监测;新疆青年科技创新人才工程项目
2021-06-16(万方平台首次上网日期,不代表论文的发表时间)
共7页
1730-1736