基于光谱和图像特征的阔叶木材与针叶木材同时分类算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2021)06-1713-09

基于光谱和图像特征的阔叶木材与针叶木材同时分类算法研究

引用
木材是人们生活中必不可少的可再生资源,同时在建筑、工艺、家具、结构材料等方面有着举足轻重的地位.市场中常见的木材品种繁多,其品质和价格千差万别,使用智能化技术对木材进行正确的分类不仅可以防止不法商贩"以次充好",也可以大幅度降低木材分类人员的工作难度.通过木材的遗传信息和解剖学信息可以得到较为准确的木材分类结果,这类方法识别工艺相对复杂,对非专业人员并不友好.借助木材切面的图像信息或光谱信息可以简单方便地对木材进行分类,然而由于不同种木材之间存在的近似性,这类方法往往分类精度不高或只适用于某些阔叶木材.提出了一种基于木材横切面图像信息和光谱信息的多特征木材分类算法,首先分别采集木材横切面的光谱信息以及图像信息;再使用Segnet图像分割方法将待分类样本分成含管孔木材和不含管孔木材两组,并对含管孔样本组中的木材进行管孔分割;然后对含管孔样本组中的木材提取管孔特征、光谱特征以及纹理特征,对无管孔样本组木材提取光谱特征和纹理特征;最后根据这些特征使用支持向量机分别对木材进行分类并记录其木材的分类结果,对分类结果不一致的样本使用相似性判据判断最佳分类结果.为了验证该方法的有效性,以20种常见的阔叶木材和针叶木材的混合样本集为研究对象,对其进行了分类.实验结果显示三种特征均可以对木材进行分类,单独使用光谱特征、纹理特征以及管孔特征对木材进行分类的最高正确率分别为93.00%,89.33% 和69.23%,通过相似测度的判断后三个特征可以相互补充从而进一步提高木材的分类正确率,最高正确率可达98.00%.综上所述,该方法可以对包含阔叶木材和针叶木材的混合样本集中的木材进行分类,木材横切面的光谱特征、纹理特征以及管孔特征可以相互补充,从而使分类正确率进一步的提高.与目前的主流木材分类方法进行对比,发现该算法的分类正确率高于其他算法.

木材树种识别、纹理特征、管孔特征、光谱特征、特征融合

41

TP391(计算技术、计算机技术)

中央高校基本科研业务费专项;中央高校基本科研业务费专项;国家自然科学基金

2021-06-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

1713-1721

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

41

2021,41(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn