基于WGAN的不均衡太赫兹光谱识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2021)02-0425-05

基于WGAN的不均衡太赫兹光谱识别

引用
物质的太赫兹光谱具有唯一性.目前,结合先进的机器学习方法,研究基于规模光谱数据库的太赫兹光谱识别技术已成为太赫兹应用技术领域的重点.考虑到由于实验条件及实验设备的影响,很难收集到多物质均衡光谱数据,而这又是对太赫兹光谱数据进行分类的基础.针对这一问题,提出一种基于WGAN的不均衡太赫兹光谱识别方法.WGAN作为生成数据的一种新方法,将模型达到纳什均衡条件下的生成数据用来补充数据集,使其达到类别均衡.生成数据可以有效映射真实数据分布,通过将生成数据与真实数据混合训练可以提高识别不均衡光谱数据的准确率.采用三种特征谱较为相似的麦芽糖化合物的太赫兹透射光谱数据进行验证,首先利用S-G滤波和三次样条插值法对三种物质的光谱数据进行归一化处理,然后通过构建WGAN模型对三种物质的不均衡太赫兹光谱数据进行扩展,使其达到类别均衡.实验在同一测试集下进行验证,并利用三组对比实验证明WGAN在不均衡数据集处理中的效果.首先利用WGAN生成数据,随着迭代次数的增加,生成数据逐渐符合真实数据分布.实验结果证明,使用WGAN扩展后的数据集训练SVM模型,可以解决模型在测试集上小样本数据(Maltotriose,Malthexaose)偏向大样本数据(Maltohep-taose)的问题.在将WGAN与传统处理不均衡数据集方法FWSVM和COPY对比后发现,三种分类算法在dataset-1数据集上的训练集准确率都能达到90% 以上.但是由于模型泛化能力的限制,传统方法在测试集上的效果并不是很理想,而使用WGAN后的测试集准确率却能达到91.54%.在不同不均衡度方面,采用不均衡度为16,81和256的数据集进行验证,其三个测试集上的准确率分别为92.08%,91.54% 和90.27%,可满足实际工作中处理不同不均衡度的要求.

太赫兹光谱、WGAN、不均衡数据、机器学习

41

O433.5(光学)

国家自然科学基金项目;云南省应用基础研究计划项目重点项目;昆明理工大学人才培养项目;云南省万人计划青年拔尖人才

2021-02-25(万方平台首次上网日期,不代表论文的发表时间)

共5页

425-429

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

41

2021,41(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn