基于拉曼光谱的乙醇柴油密度、粘度和乙醇含量分析研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2018)06-1772-07

基于拉曼光谱的乙醇柴油密度、粘度和乙醇含量分析研究

引用
乙醇柴油作为清洁燃料是柴油很好的替代品,不同乙醇含量的乙醇柴油其粘度有差别,而乙醇的含量直接影响着柴油机燃烧性能.所以急需一种方法实现快速对乙醇柴油主要指标在线监测.对采集到的不同浓度的乙醇柴油的原始拉曼光谱数据使用Savitzkv-Golay平滑(S-G)、多元散射校正(MSC)、微分处理(1stD和2ndD)、标准正态变量校正(SNV)等四种方法以及他们的组合方法对光谱数据进行预处理后,分别建立了乙醇柴油密度、粘度和乙醇含量的偏最小二乘回归(PLSR)模型,比较不同的预处理方法发现,乙醇含量和粘度在S-G+2ndD预处理后所建立的PLSR模型效果最好,预测集Rp分别为0.930和0.918,RM-SEP分别为1.237和0.034;S-G+1stD预处理后所建立的乙醇柴油密度PLSR模型结果最优,预测集Rp最大,为0.962,RMSEP最小,为0.14×10-2.将经过S-G+2ndD预处理后的光谱数据选用递归偏最小二乘算法(RPLS)、无信息变量消除(UVE)、正自适应加权算法(CRES)、连续投影算法(SPA)四种变量筛选方法以及将它们组合筛选得到的波长变量分别作为输入变量建立了PLSR模型,在使用SPA-CARS波长筛选方法所建立的乙醇柴油乙醇含量的预测模型效果最优,其预测集的Rp,RMSEP分别为0.9781和0.8255.结果表明使用该方法可以很好的对乙醇柴油的密度、粘度以及乙醇含量等主要指标进行预测.

拉曼光谱、乙醇柴油、偏最小二乘回归、波段筛选

38

O657.3(分析化学)

国家"十二五"863计划项目SS2012AA101306;国家自然科学基金项目61640417;江西省优势科技创新团队建设计划项目20153BCB24002;南方山地果园智能化管理技术与装备协同创新中心赣教高字[2014]60号;江西省研究生创新资金项目YC2015-S238

2018-07-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

1772-1778

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

38

2018,38(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn