近红外光谱法直接检测甜叶菊叶片甜菊糖苷模型建立
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2014)10-2719-04

近红外光谱法直接检测甜叶菊叶片甜菊糖苷模型建立

引用
使用近红外光谱技术直接扫描甜叶菊干叶片,建立了甜菊苷(stevioside ,ST )和莱鲍迪苷 A (rebau-dioside A ,RA)的检测模型。对甜菊苷含量在0.27%~1.40%,莱鲍迪苷 A含量在0.61%~3.98%范围内的不同品种的甜叶菊干叶片进行了近红外光谱扫描,共扫描了105份。采用偏最小二乘法建立甜菊糖苷的检测模型,比较了减去一条直线、多元散射校正、一阶导数和二阶导数等不同的光谱预处理方法对模型的影响。结果显示减去一条直线的数据预处理方法为S T的最优建模方法。S T校正集相关系数为0.986,校正均方根误差为0.341,预测均方根误差为1.00,相对分析误差为2.8;RA采用无光谱预处理建模,RA的建模结果相关系数为0.967,校正均方根误差为1.50,预测均方根误差为1.98,相对分析误差为4.17。说明近红外光谱技术检测甜叶菊干叶片中ST和RA的含量具有一定的可行性。同时与甜叶菊粉末ST 模型结果相关系数为0.986,校正均方根误差为0.32,预测均方根误差为0.601,相对分析误差为2.86和RA模型结果相关系数为0.968,校正均方根误差为1.50,预测均方根误差为1.48,相对分析误差为4.2相比差异不明显。但减少了叶片粉末检测过程中的烘干、研磨的步骤,节省了时间,降低了工作量。

近红外漫反射光谱、甜叶菊、甜菊苷、莱鲍迪苷A、偏最小二乘算法

O657.3(分析化学)

中国科学院战略性先导科技专项项目XDA08040107;安徽省科技攻关项目12010302065;安徽省教育厅重点项目kj2013A024;安徽大学研究生学术创新研究项目10117700623

2014-10-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

2719-2722

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

2014,(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn