应用局部神经网络和可见/近红外光谱法估测土壤有效氮磷钾
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3964/j.issn.1000-0593(2014)08-2102-04

应用局部神经网络和可见/近红外光谱法估测土壤有效氮磷钾

引用
要实现农田合理施肥,需要对土壤养分状况进行实时、准确地诊断,因而建立快速、稳定可靠的土壤养分定量分析方法是关键。光谱分析是一种有很大潜力的快速分析方法,从可见/近红外光谱建模的几个重要环节,即特征波段、预处理方法及回归模型方法的选择,研究了土壤有效氮、磷、钾含量快速估测的光谱建模方法。采用了多元散射校正加一阶导数进行光谱预处理,通过逐波段相关分析在可见-近红外区优选特征波段,并应用了局部非线性回归方法(BP神经网络局部回归法)建模,所建模型对土壤有效氮、磷、钾含量估测的相关系数r分别为0.90,0.82和0.94,BP神经网络局部建模比全局建模具有更好的精度和稳定性,估测精度提高幅度分别为40.63%,28.64%,22.90%。因此,采用局部BP神经网络回归建模法建立土壤有效氮、磷、钾的光谱定量分析模型,可实现对土壤养分状况的快速诊断。该研究的创新点是通过采用局部非线性回归方法提高了土壤光谱营养诊断模型的稳定性和可靠性,为作物生长过程中不同生长时期的土壤养分的动态监测和过程控制提供了技术支持。

可见/近红外光谱技术、土壤养分、神经网络、局部回归、模型

O657.3(分析化学)

国家自然科学基金面上项目41071205;中国烟草总公司项目110201102008

2014-08-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

2102-2105

相关文献
评论
暂无封面信息
查看本期封面目录

光谱学与光谱分析

1000-0593

11-2200/O4

2014,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn